The FENIKS Survey: Catalogs of Photometry, Redshifts, and Stellar Population Properties

This document describes the Version 1 (v1) release of the FENIKS UDS catalog. Please refer to Zaidi et al. (2024) for the details of the catalog construction. In the following, we describe the PSF-matched photometric catalog in §1, the eazy-py derived redshift catalog (includes stellar population parameters too) in §2, and the dedicated catalogs of stellar population properties derived using FAST in §3 and Dense Basis in §4. The segmentation map and masks are mentioned in §5.

1. PSF-matched photometric catalog

We release two almost identical photometry catalogs, one with zeropoint corrections applied and one without (see below). The zeropoint corrected catalog - feniks_uds_v1.0_zpcor.cat is the preferred catalog to use. We provide the non-zeropoint corrected catalog - feniks_uds_v1.0.cat only for completion.

Photometry Catalog files:

feniks_uds_v1.0_zpcor.cat (zeropoint corrected, recommended catalog to use)
feniks_uds_v1.0.cat (non-zeropoint corrected)

Column	Description	units/range
ID	Object identifier	-
Х, Ү	X and Y image coordinates. Pixel scale = $0.2684''$ /pixel	pixel
RA, DEC	Right Ascension and Declination	J2000 deg
fcol_X, ecol_X	color aperture flux and error. $ZP = 25 AB$	-
w_X	"weight": relative coverage	0 - 1
fauto_Kuds, eauto_Kuds	Flux and error in the UDS K -band within the Kron-like elliptical aperture.	
	ZP = 25 AB	-
ftot_Kuds, etot_Kuds	Total flux and error in the UDS K-band. $ZP = 25 AB$	-
auto_to_tot_corr	correction factor to multiply fauto_Kuds or eauto_Kuds to get	
	the total flux or error	> 1
fD3_Kuds, eD3_Kuds	Flux and error in the UDS K-band within the aperture diameter of $3''$.	
	ZP = 25 AB	-
fD5_Kuds, eD5_Kuds	Flux and error in the UDS K-band within the aperture diameter of $5''$.	
	ZP = 25 AB	-
Kronradius_Kuds	circularized Kron radius	//
aper	Diameter of the color aperture	//
aper_tot	Diameter of the AUTO FLUX aperture, the Kron-like aperture	//
aper_to_tot_corr	correction factor to multiply fcol_X or ecol_X to get the total flux or error	> 1
r50_Kuds	Half-light radius in the UDS K -band given by SExtractor	//
ellipticity_Kuds	Ellipticity in the UDS K -band as output by SExtractor	-
PA_Kuds	Position Angle (east of north) in the UDS K -band as output by SExtractor	deg

Table 1. Co	ontents of the	Photometric	catalog
-------------	----------------	-------------	---------

 Table 1 continued on next page

Table 1 (continued)

Column	Description	units/range
flags_Kuds	SExtractor flags in the UDS K -band as output by SExtractor	-
class_star	Star/Galaxy classifier of SExtractor	0 - 1
star	Binary flag for stars;	
	star=0 means that the object is classified as a star	0 or 1
gaia_star	Binary flag for stars classified in the Gaia $catalog^2$ with > 95% confidence;	
	not included in the star flag above	0 or 1
opt_nir_maxflags	maximum of the FLAGS output by SExtractor in each band	
det_contam	Binary flag indicating contamination in the detection band (UDS- K)	0 or 1
use_phot	Binary flag indicating galaxies with reliable photometry having $\mathtt{star} = 0$,	
	$\texttt{det_contam} = 0, S/N$ (calculated using color aperture flux/error in the	
	UDS K-band) > 3 , and nusefilt (parameter in the eazy-py output catalog	
	quoting the number of filters with data) > 7	0 or 1
z_grism	Binary flag indicating if the corresponding ${\tt z_spec}$ came from grism spectroscopy	0 or 1
z_spec	Spectroscopic redshift	-

2. eazy-py derived photometric redshifts

Redshift Catalog files:

feniks_uds_v1.0.eazypy.zout.ecsv - eazy-py output described in Table 2 below
feniks_uds_v1.0.eazypy.zout.fits - same as feniks_uds_v1.0.eazypy.zout.ecsv but in '.fits' format
feniks_uds_v1.0.eazypy.data.fits - contains fitting metadata (see §2.2 for an example on how to extract pdf(z)
from this file)

eazy-py version: 0.6.3

2.1 Main output catalog - feniks_uds_v1.0.eazypy.zout.ecsv

The columns in the feniks_uds_v1.0.eazypy.zout.ecsv file are mostly the same as described in the eazy-py API documentation³ with a few additions. All of the stellar population properties such as rest-frame fluxes, stellar masses, star formation rates, etc. are derived at the best available redshift: spectroscopic redshift (z_spec) if available, otherwise at the maximum likelihood photometric redshift (z_ml). The table below describes all the information available.

The rest-frame magnitudes [AB] from the rest-frame fluxes, such as in the U-band (restU), can be calculated as follows: $-2.5*log_{10}(restU) + 25$

 $^{^{2} \}rm \ https://www.cosmos.esa.int/web/gaia/dr3$

 $^{^{3}\} https://eazy-py.readthedocs.io/en/latest/eazy/zout_columns.html$

Table 2.	Contents	of the	eazy-py	catalog
----------	----------	--------	---------	---------

Column	Description	units/range
id	Object identifier	-
ra, dec	Right Ascension and Declination	J2000 deg
z_spec	Spectroscopic redshift	-1 if not available
nusefilt	Number of filters used for photo-z	-
z_ml	Maximum likelihood redshift (the equivalent of z_peak) from	
	the non-python version of eazy-py	-1 if not available
z_ml_chi2	chi-squared at $z==z_m$	-
z_ml_risk	$\mathtt{R(z_ml)},$ "Risk" parameter defined by Tanaka et al. (2017) , evaluated at <code>z_ml</code>	-
lc_min	Minimum effective wavelength of valid filters	Å
lc_max	Maximum effective wavelength of valid filters	Å
z_phot	This is the best redshift available: z_spec if available, otherwise z_ml	-
z_phot_chi2	chi-squared at z==z_phot	-
z_phot_risk	Risk evaluated at z_phot	-
z_min_risk	Redshift where $R(z)$ is minimized	-
min_risk	R(z_min_risk)	-
z_raw_chi2	Redshift where χ^2 is minimized	-
raw_chi2	Minimized χ^2	-
z025	2.5 percentile of pdf(z) (2- σ)	-
z160	16 percentile of pdf(z) $(1-\sigma)$	-
z500	50 percentile of pdf(z)	-
z840	84 percentile of pdf(z) $(1-\sigma)$	-
z975	97.5 percentile of pdf(z) (2- σ)	-
restU	Rest-frame U-band flux; magnitude $[AB] = -2.5 * log_{10} (restU) + 25$	-
restU_err	Uncertainty in restU	-
restB	Rest-frame B-band flux; magnitude $[AB] = -2.5 \times \log_{10} (\texttt{restB}) + 25$	-
restB_err	Uncertainty in restB	-
restV	Rest-frame V-band flux; magnitude $[AB] = -2.5*log_{10}(restV) + 25$	-
rest_Verr	Uncertainty in restV	-
restJ	Rest-frame J-band flux; magnitude $[AB] = -2.5 \times \log_{10}(\text{restJ}) + 25$	-
rest_Jerr	Uncertainty in restJ	-
dL	Luminosity distance at z_phot	${ m Mpc}$
Lv	Rest-frame V-band luminosity	L_{\odot}
mass	Stellar mass	M_{\odot}
sfr	Star formation rate over last 100 Myr	$M_{\odot}~{ m yr}^{-1}$
LIR	Total 8–1000 µm luminosity	L_{\odot}
energy_abs	Implied absorbed energy associated with A_V	L_{\odot}
Av	Extinction in V-band	mag
lw_age_V	Light-weighted Age (V-band)	Gyr
MLv	Mass-to-light ratio in V-band	M_\odot/L_\odot
Lv_p	2.5, 16, 50, 84, 97.5 Percentiles of rest-frame V-band luminosity	L_{\odot}
mass_p	2.5, 16, 50, 84, 97.5 Percentiles of stellar mass	M_{\odot}

Table 2 continued on next page

Table 2 (continued)

Column	Description	units/range
LIR_p	2.5, 16, 50, 84, 97.5 Percentiles of total 8–1000 μm luminosity	L_{\odot}
sfr_p	2.5,16,50,84,97.5 Percentiles of star formation rate over last 100 Myr	$M_{\odot}~{ m yr}^{-1}$
Av_p	2.5, 16, 50, 84, 97.5 Percentiles of extinction in V-band	mag
ssfr_p	2.5, 16, 50, 84, 97.5 Percentiles of specific SFR (sfr/mass)	${ m yr}^{-1}$
rest414	Rest-frame synthetic u-band (Antwi-Danso et al. 2023) flux;	
	magnitude $[AB] = -2.5*log_{10}(rest414) + 25$	-
rest414_err	Uncertainty in rest414	-
rest415	Rest-frame synthetic g-band (Antwi-Danso et al. 2023) flux;	
	magnitude $[AB] = -2.5*log_{10}(rest415) + 25$	-
rest415_err	Uncertainty in rest415	-
rest416	Rest-frame synthetic i-band (Antwi-Danso et al. 2023) flux;	
	magnitude $[AB] = -2.5*log_{10}(rest416) + 25$	-
rest416_err	Uncertainty in rest416	-

2.2 Example showing how to get probability distribution functions of redshift - pdf(z) from uds.eazypy.data.fits

```
#imports
from astropy.io import fits
import eazy
import numpy as np
import matplotlib.pyplot as plt
#read in the data.fits file
hdu=fits.open('uds.eazypy.data.fits')
#display its contents
hdu.info()
#get redshift grid eazy-py used
ZGRID = hdu[2].data
#get chi-squared array
CHI2 = hdu[3].data
#Below, we'll get pdf(z) of an object with ID = 20
ID = 20
#In general, with such fits, log-likelihood = chi-squared/(-2)
ln_pz = CHI2[ID-1]/(-2)
#convert from log-likelihood to likelihood
pz = np.exp(ln_pz)
\#plot to show the pdf(z) of object with ID=20. You can of course store these as you want
```

plt.plot(ZGRID, pz)
plt.show()

3. FAST derived Stellar population properties

Stellar Population Properties Catalog file: feniks_uds_v1.0.fout

FAST version: 1.0 Template error function: TEMPLATE_ERROR.fast.v0.2 Stellar population library: Bruzual & Charlot (2003) Star formation history function: Delayed exponential: SFR ~ t × exp(-t/tau) Stellar IMF: Chabrier (2003) Dust law: Calzetti et al. (2000) metallicity: $Z = Z_{\odot} = 0.0200$ (fixed at solar)

Column	Description	units/range
col1	id: Object identifier	-
col2	z: redshift	0.01 - $8.00~(\Delta = 0.01)$
col3	ltau: $\log[tau/yr]$	7.0 - 10.0 dex ($\Delta = 0.1$ dex)
col4	metal: metallicity	fixed at 0.02
col5	lage: $\log(age/yr)$	7.0 - 10.1 dex ($\Delta = 0.1$ dex)
col6	Av: extinction in V-band	0.0 - 10.0 mag (Δ = 0.1 mag)
col7	lmass: $\log(M_*/M_{\odot})$	dex
col8	lsfr: log[sfr/($M_{\odot}yr^{-1}$)]; -99 if sfr=0	dex
col9	lssfr: $\log[ssfr yr^{-1}]$	dex
col10	la 2t: $\log[{\rm age/tau}]$ - indicator of how evolved/quenched	
	is the stellar population	dex
col11	reduced χ^2	-

4. Dense Basis derived Stellar population properties

Stellar Population Properties Catalog file: feniks_uds_v1.0.db

Stellar population library: FSPS (Conroy & Gunn 2010; Conroy et al. 2009) using the MIST isochrones (Choi et al. 2016), and MILES spectral library (Sánchez-Blázquez et al. 2006)

Nebular emission lines: CLOUDY (Ferland et al. 2017; Byler et al. 2017)

Star formation history: non-parametric using the model in Iyer et al. (2019)

Star formation history constrained at lookback times: t_{25} , t_{50} , and t_{75} at which 25%, 50%, and 75% of stellar mass had been assembled, respectively.

Stellar IMF: Chabrier (2003)

Dust law: Calzetti et al. (2000)

metallicity (Z/Z_{\odot}) : 0.01 - 2.0

Column	Description	units/range
ID	Object identifier	-
logM_50	50^{th} percentile of \log_{10} of stellar mass $[M_*/M_{\odot}]$	dex
logM_16	16^{th} percentile of \log_{10} of stellar mass $[M_*/M_{\odot}]$	dex
logM_84	84^{th} percentile of \log_{10} of stellar mass $[M_*/M_{\odot}]$	dex
logSFRinst_50	50^{th} percentile of \log_{10} of instantaneous star-formation rate $[M_{\odot}yr^{-1}]$	dex
$logSFRinst_16$	16^{th} percentile of \log_{10} of instantaneous star-formation rate $[M_{\odot}yr^{-1}]$	dex
logSFRinst_84	84^{th} percentile of \log_{10} of instantaneous star-formation rate $[M_{\odot}yr^{-1}]$	dex
logZsol_50	50^{th} percentile of \log_{10} of metallicity $[Z/Z_{\odot}]$	dex ($Z/Z_{\odot}:$ 0.01 - 2.0)
logZsol_16	16^{th} percentile of \log_{10} of metallicity $[Z/Z_{\odot}]$	dex ($Z/Z_{\odot}:$ 0.01 - 2.0)
logZsol_84	84^{th} percentile of log ₁₀ of metallicity $[Z/Z_{\odot}]$	dex ($Z/Z_{\odot}:$ 0.01 - 2.0)
Av_50	50^{th} percentile of extinction in V-band	0 - 4 mag
Av_16	16^{th} percentile of extinction in V-band	0 - 4 mag
Av_84	84^{th} percentile of extinction in V-band	0 - 4 mag
zfit_50	50^{th} percentile of the best-fit redshift	-
zfit_16	16^{th} percentile of the best-fit redshift	-
zfit_84	84^{th} percentile of the best-fit redshift	-
logMt_50	50^{th} percentile of \log_{10} of total mass formed (i.e. without including mass loss	
	for old stars while calculating stellar mass); same units as stellar mass	dex
logMt_16	16^{th} percentile of \log_{10} of total mass formed (i.e. without including mass loss	
	for old stars while calculating stellar mass); same units as stellar mass	dex
logMt_84	84^{th} percentile of \log_{10} of total mass formed (i.e. without including mass loss	
	for old stars while calculating stellar mass); same units as stellar mass	dex
t25_50	50^{th} percentile of the time when 25% of the total mass was assembled,	
	as a fraction of the age of the universe at $\texttt{zfit_50}$	0 - 1
t25_16	16^{th} percentile of the time when 25% of the total mass was assembled,	
	as a fraction of the age of the universe at $\texttt{zfit_50}$	0 - 1
t25_84	84^{th} percentile of the time when 25% of the total mass was assembled,	
	as a fraction of the age of the universe at $\texttt{zfit_50}$	0 - 1
t50_50	50^{th} percentile of the time when 50% of the total mass was assembled,	
	as a fraction of the age of the universe at $\texttt{zfit_50}$	0 - 1
t50_16	16^{th} percentile of the time when 50% of the total mass was assembled,	
	as a fraction of the age of the universe at \texttt{zfit}_50	0 - 1
t50_84	$84^{th} {\rm percentile}$ of the time when 50% of the total mass was assembled,	
	as a fraction of the age of the universe at \texttt{zfit}_50	0 - 1
t75_50	50^{th} percentile of the time when 75% of the total mass was assembled,	
	as a fraction of the age of the universe at \texttt{zfit}_50	0 - 1
t75_16	16^{th} percentile of the time when 75% of the total mass was assembled,	
	as a fraction of the age of the universe at \texttt{zfit}_50	0 - 1
t75_84	84^{th} percentile of the time when 75% of the total mass was assembled,	

 Table 4. Contents of the Dense Basis catalog

Table 4 continued on next page

.

Table 4 (continued)

Column	Description	units/range
	as a fraction of the age of the universe at $\tt zfit_50$	0 - 1
nparam	number of lookback time parameters used	fixed at 3: t_{25} , t_{50} , and t_{75}
nbands	number of bands utilized	-
chi2	reduced χ^2	-

5. Detection Segmentation map and Masks

UDS-K band's (detection band) segmentation map: feniks_uds_v1.0_UDS_K_seg.fits

Region file of UDS-K detected object centroids: feniks_uds_v1.0_UDS_K_obj_centroids.reg

Masks for bright stars and other artifacts for optical-NIR bands: feniks_uds_v1.0_masks.tar.gz

Pixels with the value '0' are unmasked regions devoid of bright stars and other artifacts, whereas '1' means masked. Only in the detection band mask - UDS_K_Mask.fits, regions with no data are marked with '100'. This is useful for calculating the total effective area with good quality data which is covered by pixels not equal to '1' or '100' (which is the same as pixels equal to '0').

REFERENCES

- Antwi-Danso, J., Papovich, C., Leja, J., et al. 2023, ApJ, 943, 166, doi: 10.3847/1538-4357/aca294
- Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000, doi: 10.1046/j.1365-8711.2003.06897.x
- Byler, N., Dalcanton, J. J., Conroy, C., & Johnson, B. D. 2017, ApJ, 840, 44, doi: 10.3847/1538-4357/aa6c66
- Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682, doi: 10.1086/308692
- Chabrier, G. 2003, PASP, 115, 763, doi: 10.1086/376392
- Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102, doi: 10.3847/0004-637X/823/2/102

- Conroy, C., & Gunn, J. E. 2010, ApJ, 712, 833, doi: 10.1088/0004-637X/712/2/833
- Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486, doi: 10.1088/0004-637X/699/1/486
- Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017, RMxAA, 53, 385, doi: 10.48550/arXiv.1705.10877
- Iyer, K. G., Gawiser, E., Faber, S. M., et al. 2019, ApJ, 879, 116, doi: 10.3847/1538-4357/ab2052
- Sánchez-Blázquez, P., Gorgas, J., Cardiel, N., & González, J. J. 2006, A&A, 457, 809,
 - doi: 10.1051/0004-6361:20064845
- Zaidi, K., Marchesini, D., Papovich, C., et al. 2024, arXiv e-prints, arXiv:2401.03107, doi: 10.48550/arXiv.2401.03107